bet365注册会员-bet365是什么网站

搜索
你想要找的

12月19日 孟德宇:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
2024-12-19 15:00:00
活動主題:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
主講人:孟德宇
開始時間:2024-12-19 15:00:00
舉行地點:普陀校區理科大樓A1114
主辦單位:統計學院、統計交叉科學研究院
報告人簡介

孟德宇,西安交通大學教授,博導,大數據算法與分析技術國家工程實驗室機器學習教研室負責人。發表論文百余篇,谷歌學術引用超過31000次。現任IEEE Trans.PAMI,NSR等7個國內外期刊編委。目前主要研究聚焦于元學習、概率機器學習、可解釋性神經網絡等機器學習基礎研究問題。


內容簡介

The learning rate (LR) is one of the most important hyperparameters in stochastic gradient descent (SGD) algorithm for training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which limits their ability to adapt to practical non-convex optimization problems due to the significant diversification of training dynamics. Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting issues, we propose to parameterize LR schedules with an explicit mapping formulation, called \textit{MLR-SNet}. The learnable parameterized structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and text classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the explicit parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be easily generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs, network architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance compared with hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also substantiated when the training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm equipped with LR schedule produced by our MLR-Net, with the convergence rate comparable to the best-known ones of the algorithm for solving the problem. {The source code of our method is released at https://github.com/xjtushujun/MLR-SNet.)


菲彩百家乐官网的玩法技巧和规则| 百家乐官网输一压二| 博彩百家乐字谜总汇| 美高梅娱乐城网址| 澳门百家乐官网单注下注| 大发888娱乐城送钱| 百家乐官网水晶筹码价格| 大发888怎么下载安装| 真人百家乐官网蓝盾赌场娱乐网规则 | 百家乐官网赢钱打| 大发888 安装包的微博| 新彩百家乐官网的玩法技巧和规则| 百家乐开线| 博九百家乐官网娱乐城| 百家乐国际娱乐网| 百家乐官网是否有规律| 百家乐刷钱| 九州百家乐官网的玩法技巧和规则 | 新平| 百家乐论坛博彩啦| 沙田区| 百家乐老是输| 百家乐官网真人娱乐场开户注册| 波音娱乐城送彩金| 圣淘沙百家乐娱乐城| 网络百家乐官网真假| 盈彩娱乐| 申请百家乐会员送彩金| 打百家乐官网庄闲的技巧| 69棋牌游戏| 机器百家乐软件| 百家乐官网赌场方法| 波音开户| 全讯网娱乐353788| 百家乐噢门棋牌| JJ百家乐官网的玩法技巧和规则 | 做生意佩戴什么纳财| 百家乐官网投注心态| 三晋棋牌中心| 大三巴百家乐的玩法技巧和规则 | 威尼斯人娱乐城信誉怎样|