bet365注册会员-bet365是什么网站

搜索
你想要找的

12月19日 孟德宇:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
2024-12-19 15:00:00
活動主題:MLR-SNet (Meta-LR-Schedule-Net): Transferable LR Schedules for Heterogeneous Tasks
主講人:孟德宇
開始時間:2024-12-19 15:00:00
舉行地點:普陀校區理科大樓A1114
主辦單位:統計學院、統計交叉科學研究院
報告人簡介

孟德宇,西安交通大學教授,博導,大數據算法與分析技術國家工程實驗室機器學習教研室負責人。發表論文百余篇,谷歌學術引用超過31000次。現任IEEE Trans.PAMI,NSR等7個國內外期刊編委。目前主要研究聚焦于元學習、概率機器學習、可解釋性神經網絡等機器學習基礎研究問題。


內容簡介

The learning rate (LR) is one of the most important hyperparameters in stochastic gradient descent (SGD) algorithm for training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which limits their ability to adapt to practical non-convex optimization problems due to the significant diversification of training dynamics. Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting issues, we propose to parameterize LR schedules with an explicit mapping formulation, called \textit{MLR-SNet}. The learnable parameterized structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and text classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the explicit parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be easily generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs, network architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance compared with hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also substantiated when the training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm equipped with LR schedule produced by our MLR-Net, with the convergence rate comparable to the best-known ones of the algorithm for solving the problem. {The source code of our method is released at https://github.com/xjtushujun/MLR-SNet.)


六合彩大全| 大发888娱乐捕鱼游戏| 博天堂百家乐官网| 磐石市| 澳门百家乐单注下| 百家乐官网怎么玩最保险| 百家乐官网制胜法| 百家乐官网高手投注法| 百家乐官网洗码软件| 大发888方官| 百家乐威尼斯人| 362百家乐官网的玩法技巧和规则 大集汇百家乐官网的玩法技巧和规则 | 百家乐官网平注赢钱法| 大发888老虎机游戏| 网络百家乐软件真假| 百家乐网址哪里有| 北京市| 六合彩报码室| 大发888娱乐场下载专区| 水晶百家乐筹码| 百家乐电脑游戏高手| 鸟巢百家乐官网的玩法技巧和规则 | 百家乐是哪个国家| 百家乐官网最好的平台是哪个| 冠通棋牌大厅下载| 网上百家乐哪家最好| 百家乐官网群shozo权威| 百家乐官网博娱乐网赌百家乐官网的玩法技巧和规则 | 太阳城百家乐官网网址--| 永福县| 网上真钱斗地主| 赌场风云演员表| 百家乐官网视频连线| 专业百家乐官网分析| 永利高足球博彩网| 明升投注网 | 皇城百家乐娱乐城| 大三巴百家乐的玩法技巧和规则| 金木棉百家乐的玩法技巧和规则 | 德州百家乐官网赌博规则| e世博百家乐官网技巧|