報告人簡介
王淋生,博士畢業于南京大學,導師為田剛教授,目前在復旦大學上海數學中心從事博士后研究。主要從事代數幾何和微分幾何尤其是K-穩定性相關問題的研究,結果發表于Math.Z.Math.Nachr. 等權威數學期刊。
內容簡介
If the delta invariant of a Fano manifold is greater than one, then the Fano manifold is K-stable and admits a KE metric. In this case, it admits no nontrivial holomorphic vector field. For a Fano manifold with nontrivial holomorphic vector fields, we will introduce another "delta" invariant characterizing its K-polystability. Moreover, the g-weighted version of this invariant can be used to characterizing the existence of g-solitons on a Fano manifold. As an application, we will give a family of Fano threefolds admitting g-solitons for any weight function g.