報告人簡介
Masaki Izumi(泉正己),現任京都大學理學研究科教授。泉正己教授在算子代數、尤其是次因子理論領域的工作聞名遐邇。他給出了很多一般方法無法完成的具體范例的構造,并以出色的技巧給出了各種各樣完整的計算。其主要結果為:對指數4以下次因子分類理論的貢獻及其在指數5以下情況的進一步推廣、量子二重構造法的具體計算、Haagerup次因子的新型構造及其推廣、古典Galois理論的量子化版本以及其次因子方面的結果在C*-代數的子代數研究領域的類比。
泉正己教授于1996年獲得日本數學會賞建部賢弘賞,2003年獲得日本數學會解析學賞,2004年獲得作用素環賞(這是日本國內算子代數領域的最高獎項),2010年獲得日本數學會秋季賞(這相當于日本國內的沃爾夫獎),2010年受邀做ICM報告,2014年獲得井上學術賞。
內容簡介
The notion of qausi-product actions of a compact group on a C*-algebra was introduced by Bratteli et al. in their attempt to seek an equivariant analogue of Glimm's characterization of non-type I C*-algebras. We show that a faithful minimal action of a second countable compact group on a separable C*-algebra is quasi-product whenever its fixed point algebra is simple. This was previously known only for compact abelian groups and for profinite groups. Our proof relies on a subfactor technique applied to finite index inclusions of simple C*-algebras in the purely infinite case, and also uses ergodic actions of compact groups in the general case. As an application, we show that if moreover the fixed point algebra is a Kirchberg algebra, such an action is always isometrically shift-absorbing, and hence is classifiable by the equivariant KK-theory due to a recent result of Gabe-Szabó.