Curvature Operator of the Second Kind and a Conjecture of Nishikawa
報(bào)告人簡(jiǎn)介
曹曉冬,1996年本科畢業(yè)于中國(guó)科學(xué)技術(shù)大學(xué),2002年畢業(yè)于麻省理工學(xué)院獲得博士學(xué)位。畢業(yè)后先后在哥倫比亞大學(xué)和康奈爾大學(xué)工作,2018年起在康奈爾大學(xué)擔(dān)任正教授,曾擔(dān)任本科生主任(2017-2020, 2023-2024)。曹曉冬的主要研究領(lǐng)域是Ricci流,包括Ricci孤立子和Einstein流形的分類。自2005年起發(fā)表了近三十篇論文,并于2013年獲得西蒙斯(Simons)Fellowship。主要學(xué)術(shù)成果包括:1)發(fā)展了一套系統(tǒng)的證明Harnack不等式的方法;2)發(fā)現(xiàn)了Ricci孤立子上的Weitzenbock公式;3)證明了關(guān)于第二類曲率算子的Nishikawa猜想。
內(nèi)容簡(jiǎn)介
The Riemannian curvature tensor can be viewed as an operator on the space of 2-forms, this is the curvature operator (of the first kind), which has been studied extensively. It can also be viewed as an operator on the space of traceless symmetric 2-tensors, this is the curvature operator of the second kind. We will talk about this approach and discuss about a conjecture of Nishikawa. This is a joint work with Matthew Gursky and Hung Tran.